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Abstract

Kernels are typically justified as a smoothing device in nonparametric analysis. We provide alternative

interpretations, which could lead to the use of asymmetric kernels. We thus derive the class of optimal asymmetric

kernels, and analyse its main properties. We illustrate numerically its optimality by showing how well it fares in

locating the mode and tail quantiles of some common asymmetric densities.
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1. Introduction

Kernels are used in nonparametric analysis for smoothing purposes. For example, suppose data Xj,

j = 1, 2, . . ., n, are available from a random sampling of a continuous density f(x). A smoothed estimate

f̂ (x)of f(x)maybeobtainedbyusingakernel. In thesimplestsetting, f̂ (x)=(nh)� 1Sj = 1
n K((x�Xj)h

� 1),where

where h is the smoothing parameter and K(�) is a chosen continuous kernel. The interpretation of each of

jðx� Xj; hÞuh�1Kððx� XjÞh�1Þ; j ¼ 1; 2; . . . ; n; ð1Þ
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is one whereby the kernel is a weighting device, say a density function, and h� 1 indicates the

concentration of the assigned weights around the points Xj. The estimate f̂ (x) is then the average of these

j(�). It has been shown that, in large samples, the optimal (in a mean squared-error sense) symmetric

kernel is a quadratic one, the Epanechnikov kernel (Epanechnikov, 1969), and that its optimum window

width he falls as the sample size n increases; e.g. see Silverman (1986) or Härdle and Linton (1994) for

an introduction. In a sense, there is less need for smoothing as n!l because the empirical distribution

becomes almost continuous. We now give additional different interpretations to kernels, then re-examine

the optimality of the quadratic kernel.

In some statistical applications, one may assign some uncertainty as to the accuracy of the available

data on X. For example, there may be errors in reporting, recording, etc., which mean that an observation

Xj could have come from somewhere else in the neighbourhood of Xj, say x, with probability j(x�Xj; h).

Kernels can then be given an errors-in-variables interpretation1. To take a simple example, it is likely that

economic agents will misreport their taxable incomes, whether by malice or by ignorance of tax-rebate

entitlements. If there is a lack of explicit quantifiable evidence, it may not be known how to model this

tendency explicitly. If one believes that a hypothetically fully efficient version of an existing tax system

could raise more tax receipts, it could be of interest to let j(�) be asymmetric with positive skewness. An

important question arises: is the quadratic (symmetric) Epanechnikov kernel still optimal and, if not,

what is the optimal one?

One need not subscribe to the income distribution example to consider asymmetric kernels. An

alternative justification for asymmetric kernels would be that density estimates tend to inherit the salient

properties of their kernels in moderately-sized samples. If a density is suspected to be highly skewed, it

may be sensible to contemplate asymmetric kernels. Some benefits will ensue, for example, when

estimating the mode and tail quantiles of such a density. It is important to be able to locate more

precisely the mode of possibly asymmetric densities when one wishes to maximise a smoothed profile

likelihood with respect to a parameter of interest; e.g. see Silverman et al. (1990). Also, smoothed

quantiles are important in the literature on robust statistical methods such as the regression quantiles of

Koenker and Bassett (1978) or Koenker et al. (1994), and they can also be used to estimate probabilities

for extreme-value events for problems such as in Tawn (1992).

The list of potential applications of and/or motivations for asymmetric kernels is large, and we have

highlighted only a few. For example, spectral analysis in time series is another huge area of activity

where asymmetric kernels are the rule rather than the exception, though the prime concern there is

consistency rather than smoothing. The piecewise cubic kernel of Parzen is one example, based on the

mean of an underlying uniform distribution. See Anderson (1971) (ch. 9) or Granger and Newbold

(1986) (ch. 2) for an introduction, and Taniguchi and Kakizawa (2000) (ch. 6) for more recent

applications.

Other successful applications of asymmetric kernels include Samiuddin and El-Sayyad (1990),

Holiday (1995), Chen (1999, 2000), Scaillet (2001) and Fernandes and Scaillet (2002); where such

kernels are shown to lead to desirable properties. Since asymmetric kernels are already in use, and there

are good reasons for continuing to employ them, the question we address is the following: if one were to
1 This is not to say that errors-in-variables problems should necessarily be dealt with by means of kernels. Such

deconvolution problems have been treated extensively elsewhere, and are only used here for interpretation/illustration purposes.
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use asymmetric kernels, which class would be optimal and what would its features be? In this paper, we

derive an explicit answer to this question.

A potentially worrying aspect of considering asymmetric kernels is the paper by Cline (1988). He

shows that asymmetric kernels are asymptotically (n!l in his proof on p. 1424) inadmissible, though

not differing by an order of magnitude from their symmetrised counterpart (op. cit., p. 1425). Our context

differs in that there is available qualitative information in the form of an a priori skewness in one direction.

It is, therefore, more efficient to incorporate this qualitative feature into the estimation procedure.

It is also possible to use transformations in order to reduce the problems caused by the asymmetry of

the density; e.g. see Wand et al. (1991) and the subsequent literature. See also Breiman and Friedman

(1985), Tibshirani (1988) and Nychka and Ruppert (1995) for the different framework of regression

models. Alternatively, a class of hypergeometric transformations of flexible form (including as special

cases Box-Cox, Hermite polynomials and many others) can be applied as suggested in Abadir (1999,

2002). Our approach avoids the difficulty of identifying optimal transformations in samples, which are

not large, but would be less effective if one had a priori reasons to believe that a class of transformations

should symmetrise the variate of interest.

The next section derives a class of optimal asymmetric kernels, which turns out to be cubic with zero

mean, and we solve explicitly for the parameters of this cubic. Its main numerical features are analysed

in the subsequent section. Further numerical results are in Lawford (2001) who shows that the optimal

asymmetric kernel is better than Epanechnikov’s at estimating modes and extreme-value quantiles of

asymmetric densities. Some general comments about our approach conclude the paper.
2. Asymmetric kernels

Suppose that possibly asymmetric kernels are contemplated, what functional form should they

optimally take? One may argue from the point of view of minimising the distance between f(x) and f̂ (x),

say the integrated mean squared-error (IMSE) or some other measure of distance.2 For a kernel with

skewness c, we have the following result based on minimising IMSE and solving the calculus-of-

variations problem.

Theorem 1. The standardised (unit-variance) kernel with skewness c, which minimises the leading term

in the IMSE expansion is

KcðtÞuaðt � k1Þðt � k2Þðt � k3Þ1taðk1;k2Þ; ð2Þ

where a= 12(p� 1)(p2� 3p + 1)2/[5(p + 1)5],

k1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5

�p2 þ 3p� 1

s
; k2 ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

�p2 þ 3p� 1

s
; k3 ¼ � 3� 4pþ 3p2

ðp� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð�p2 þ 3p� 1Þ

p ;
2 Some information-theoretic measures necessitate further care in the treatment of supports for f̂ (�) (hence K(�)) and/or f (�) if
their logarithms are required. Others need not be formulated in terms of logarithms; e.g. (

R
f (x)1 + ddx� 1)/d for some d p 0, the

case d = 0 giving the usual Shannon-entropy
R
f (x)ln( f (x))dx.
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and pu� k2/k1a(1, 3/2] solves
ffiffiffi
5

p
(8� 27p+ 27p2� 8p3)/[7(� p2 + 3p� 1)3/2] = c uniquely for

ca(0, 2/7].

Proof. In order to reduce the bias in the IMSE, ceteris paribus, we should choose a second-order kernel,

i.e. one with zero mean. Then, the leading (small-h, large-n) term in the IMSE expansion is

h4

4

Z
t2KðtÞdt

� �2Z
d2f ðxÞ
dx2

� �2

dxþ 1

nh

Z
KðtÞ2dt; ð3Þ

which achieves its minimum with respect to h at

5

4n4=5

  Z
KðtÞ2dt

!2,Z
t2KðtÞdt

!2=5 Z
d2f ðxÞ
dx2

� �2

dx

 !1=5

;

e.g. see Silverman (1986) (pp. 39–41) for details. When the latter integral is finite, the problem of

finding the optimal second-order K(t) is equivalent to minimising
R
K(t)2dt subject to K(t) being

nonnegative,
R
K(t)dt = 1 =

R
t2K(t)dt and

R
t3K(t)dt = c. Modifying the derivations in Hodges and Lehmann

(1956) for our extra constraint (the last one), we get the kernel in Eq. (2) where the parameters

k1 < 0 < k2Vk3 and 0 < a ð4Þ

are all real, and to be determined. Then, the conditions

Z k2

k1

KcðtÞdt ¼ 1;

Z k2

k1

tKcðtÞdt ¼ 0;

Z k2

k1

t2KcðtÞdt ¼ 1;

Z k2

k1

t3KcðtÞdt ¼ c ð5Þ

determine the parameters. Solving the first constraint by definite integration of Kc(t) from Eq. (2), k3 =
6/[a(k2� k1)

3]+(k1 + k2)/2, and upon substitution into the second constraint,

a ¼ 60ðk1 þ k2Þ=ðk2 � k1Þ5: ð6Þ

The formula for a can be used to simplify k3 to

k3 ¼ ð3k21 þ 4k2k1 þ 3k22Þ=½5ðk1 þ k2Þ
: ð7Þ

Substituting Eq. (6) and Eq. (7) into the remaining two constraints of Eq. (5) gives

1 ¼ �ðk22 þ 3k1k2 þ k21Þ=5 and c ¼ �ðk1 þ k2Þð8k21 þ 19k1k2 þ 8k22Þ=35: ð8Þ

The right-hand sides of all the equations in Eqs. (6)–(8) are homogeneous functions, and it facilitates the

solution if we let

k u� pk ; ð9Þ
2 1
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where paR+ to satisfy Eq. (4). The first equation of Eq. (8) determines k1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5=ð�p2 þ 3p� 1Þ

p
,

which can be used in Eq. (6), Eq. (7), Eq. (9), and the second equation of (8) to give

a ¼ 12ðp� 1Þðp2 � 3pþ 1Þ2

5ðpþ 1Þ5
; k3 ¼

3� 4pþ 3p2

ðp� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð�p2 þ 3p� 1Þ

p ;

k2 ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

�p2 þ 3p� 1

s
; c ¼

ffiffiffi
5

p
ð8� 27pþ 27p2 � 8p3Þ
7ð�p2 þ 3p� 1Þ3=2

; ð10Þ

respectively. Notice that the polynomial in the numerator of c has the three roots p= 1, (19/16)F ((1/

16)
ffiffiffiffiffiffiffiffi
105

p
), which may seem to indicate that c can take any value in R for pa((3/2)� ((1/2)

ffiffiffi
5

p
), (3/2)+((1/

2)
ffiffiffi
5

p
)), and that multiple solutions for p may exist for any given c; see Fig. 1. This is not the case since p

is further constrained to pa(1, 3/2] and bounded by the two vertical lines on the graph, as we now show..

The first of these further restrictions on p arises from the expression for a in Eq. (10). Since Eq. (4)

requires a>0, we must have p>1. The second restriction arises from the requirement in Eq. (4) that

k3z k2, with both given in Eq. (10). Therefore, p cannot lie outside the interval [� 1, 3/2]. Combining

both restrictions on p, we have pa[1, 3/2], with maximum c (and k1) at p= 3/2. 5

Remark 1. It was assumed that c>0 in the statement of the theorem. For c< 0, one needs the mirror

image of the kernel given there.

Remark 2. If there are no a priori grounds for believing that the underlying density f(x) is skewed, then

the derivations in Hodges and Lehmann (1956) or Epanechnikov (1969) apply. However, if the density is

known to be qualitatively asymmetric (see the introductory example on income distributions), then c p 0

should be considered. In practice, c could be selected according to a cross-validation approach, and is

going to be positively related with the standardised empirical skewness of X.

Remark 3. In spite of being asymmetric, the optimal kernel has zero mean. This reduces the bias of the

estimated density, ceteris paribus. A zero mean, coupled with c>0, implies that the median and mode of
Fig. 1. Plot of c against p.
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Kc(t) occur at t < 0. This may seem to violate the discussion in the income distribution example of

Introduction, but this is not the case. An increasing marginal tax rate would guarantee higher tax receipts

(in spite of the zero mean of Kc(�)) if the fully-efficient tax collection system were implemented.

Remark 4 . It follows from minimizing Eq. (3) that, for large samples, hcgconstant/n1/5.
3. Main intrinsic numerical features of the cubic Kc(�)

We investigate the numerical features of the cubic Kc(�). We compare it mainly to its close relative, the

Epanechnikov kernel Ke(�), that arises as the special case of Kc(�) with c = 0. We, therefore, take the other

extreme allowable value of c, namely c= 2/7, giving rise to

KcðtÞ ¼
12

625
ðt þ 2Þðt � 3Þ21tað�2;3Þ:

We present the main results that are intrinsic to Kc(�). In Lawford (2001), Monte-Carlo experiments are

given to show how Kc(�) performs better than the Epanechnikov kernel at estimating modes and extreme-

value quantiles of asymmetric densities.

Recall Eq. (1) which gives a class of functions (kernels) integrating to 1, all from the same family as

K(�) but with different scales. When comparing kernels’ IMSE performances, we wish to uncouple the

effect of the choices of K(�) and h. To this end, we need to find the j(�) from each family K

( = Epanechnikov, Cubic, etc.) such that its asymptotic IMSE separates into two multiplicative terms: one

in j(�) and another in h. This j(t; sK) is called the (asymptotic) canonical kernel for the class K, with

(asymptotic) canonical scale sK. Marron and Nolan (1989) (p. 197) show that

sK ¼
�Z

KðtÞ2dt
��Z

t2KðtÞdt
�2�1=5

:

Using j(t; sK) = sK
� 1K(t/sK) in Eq. (3) instead of K(t), then changing the variable t/sKit, we obtain the

asymptotic IMSE (after correcting for a typo in (2.4) of Marron and Nolan, 1989 (p. 197)

" Z
KðtÞ2dt

!2Z
t2KðtÞdt

#2=5
h4

4

Z
d2f ðxÞ
dx2

� �2

dxþ 1

nh

 !
;

where the term in the (first) square bracket is now the only function of K(t), and it is invariant to changes

of scale, i.e. invariant to h if K(t) were to be replaced by any j(t; h). The importance of such a separation

is also highlighted by the derivations in Samiuddin and El-Sayyad (1990) (especially pp. 865–867).

In order to be able to translate a window width of Kc(�) into those of commonly-used kernels, we need

to provide an exchange-rate table based on sK/sc. Such exchange rates are not transitive, and Table 1 lists

them for a variety of commonly-referenced kernels, namely K =Uniform, Triangular, Epanechnikov,

Quartic and Gaussian. Because of the asymmetric support of the cubic, we have normalised all kernels to

have unit variances, instead of normalising them to be on the (� 1, 1) support. It is seen that the

exchange rates are all approximately equal to 1, once variance-standardisation is performed. This reveals



Table 1

Exchange rates for kernel K relative to the cubic

K KK(t) sK/sc

Uniform ð1=2
ffiffiffi
3

p
Þ1tað�

ffiffi
3

p
;
ffiffi
3

p
Þ 1.0103

Triangular ð1=
ffiffiffi
6

p
Þð1� ð1=

ffiffiffi
6

p
ÞAtAÞ1tað�

ffiffi
6

p
;
ffiffi
6

p
Þ 0.9984

Epanechnikov ð3=4
ffiffiffi
5

p
Þð1� ð1=5Þt2Þ1tað�

ffiffi
5

p
;
ffiffi
5

p
Þ 0.9956

Quartic ð15=16
ffiffiffi
7

p
Þð1� ð1=7Þt2Þ21tað�

ffiffi
7

p
;
ffiffi
7

p
Þ 0.9968

Gaussian ð1=
ffiffiffiffiffiffi
2p

p
Þexpð�ð1=2Þt2Þ 1.0056
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that (asymptotic) exchange rates for kernels are essentially equivalent to a transformation of kernels to

have unit variances.
4. Concluding comments

We have derived the optimal functional form that asymmetric kernels should take. Even though we

have focused on density estimation in our discussion of the results, kernels are also of use in other areas

of nonparametric analysis, such as the ones mentioned in Introduction. It is also worth pointing out that a

special case of the calculus-of-variations problem which we have solved in the proof of our theorem

arises in the seemingly unrelated area of assessing the efficiency of nonparametric tests; e.g. see Hodges

and Lehmann (1956) and Hallin and Tribel (2000). Our new kernel could have some applicability there

too. Finally, Ruppert and Cline (1994) suggest an iterated empirical transformation, based on the

smoothed empirical distribution, for the sake of asymptotic bias reduction. Our kernel could be used

there too (except for the boundaries of the target uniform distribution) in order to achieve finite-sample

improvements.
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